Bounds for the regularity of product of edge ideals
نویسندگان
چکیده
منابع مشابه
Regularity Bounds for Binomial Edge Ideals
We show that the Castelnuovo–Mumford regularity of the binomial edge ideal of a graph is bounded below by the length of its longest induced path and bounded above by the number of its vertices.
متن کاملRegularity of second power of edge ideals
Let G be a graph with edge ideal I(G). Benerjee and Nevo proved that for every graph G, the inequality reg(I(G)2)≤reg(I(G))+2 holds. We provide an alternative proof for this result.
متن کاملAn upper bound for the regularity of powers of edge ideals
A recent result due to Ha and Van Tuyl proved that the Castelnuovo-Mumford regularity of the quotient ring $R/I(G)$ is at most matching number of $G$, denoted by match$(G)$. In this paper, we provide a generalization of this result for powers of edge ideals. More precisely, we show that for every graph $G$ and every $sgeq 1$, $${rm reg}( R/ I(G)^{s})leq (2s-1) |E(G)|^{s-1} {rm ma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Algebraic combinatorics
سال: 2022
ISSN: ['2589-5486']
DOI: https://doi.org/10.5802/alco.234